Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 63, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481317

RESUMO

BACKGROUND: Obligate blood-feeding insects obtain the nutrients and water necessary to ensure survival from the vertebrate blood. The internal taste sensilla, situated in the pharynx, evaluate the suitability of the ingested food. Here, through multiple approaches, we characterized the pharyngeal organ (PO) of the hematophagous kissing bug Rhodnius prolixus to determine its role in food assessment. The PO, located antero-dorsally in the pharynx, comprises eight taste sensilla that become bathed with the incoming blood. RESULTS: We showed that these taste sensilla house gustatory receptor neurons projecting their axons through the labral nerves to reach the subesophageal zone in the brain. We found that these neurons are electrically activated by relevant appetitive and aversive gustatory stimuli such as NaCl, ATP, and caffeine. Using RNA-Seq, we examined the expression of sensory-related gene families in the PO. We identified gustatory receptors, ionotropic receptors, transient receptor potential channels, pickpocket channels, opsins, takeouts, neuropeptide precursors, neuropeptide receptors, and biogenic amine receptors. RNA interference assays demonstrated that the salt-related pickpocket channel Rproppk014276 is required during feeding of an appetitive solution of NaCl and ATP. CONCLUSIONS: We provide evidence of the role of the pharyngeal organ in food evaluation. This work shows a comprehensive characterization of a pharyngeal taste organ in a hematophagous insect.


Assuntos
Cloreto de Sódio , Paladar , Animais , Paladar/fisiologia , Cloreto de Sódio/farmacologia , Faringe , Insetos , Trifosfato de Adenosina
2.
J Comp Neurol ; 519(9): 1631-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21452243

RESUMO

The Decapoda is the largest order of crustaceans, some 10,000 species having been described to date. The order includes shrimps, lobsters, crayfishes, and crabs. Most of these are highly visual animals that display complex visually guided behaviors and, consequently, large areas of their nervous systems are dedicated to visual processing. However, our knowledge of the organization and functioning of the visual nervous system of these animals is still limited. Beneath the retina lie three serially arranged optic neuropils connected by two chiasmata. Here, we apply dye tracers in different areas of the retina or the optic neuropils to investigate the organization of visual space maps in the optic neuropils of the brachyuran crab Chasmagnathus granulatus. Our results reveal the way in which the visual space is represented in the three main optic neuropils of a decapod. We show that the crabs' optic chiasmata are oriented perpendicular to each other, an arrangement that seems to be unique among malacostracans. Crabs use retinal position in azimuth and elevation to categorize visual stimuli; for instance, stimuli moving above or below the horizon are interpreted as predators or conspecifics, respectively. The retinotopic maps revealed in the present study create the possibility of relating particular regions of the optic neuropils with distinct behavioral responses elicited by stimuli occurring in different regions of the visual field.


Assuntos
Braquiúros/anatomia & histologia , Braquiúros/fisiologia , Neurópilo/citologia , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Vias Visuais/anatomia & histologia , Animais , Masculino , Neurópilo/fisiologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
3.
Neurobiol Learn Mem ; 92(2): 176-82, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19186214

RESUMO

Investigations using invertebrate species have led to a considerable progress in our understanding of the mechanisms underlying learning and memory. In this review we describe the main behavioral and neuronal findings obtained by studying the habituation of the escape response to a visual danger stimulus in the crab Chasmagnathus granulatus. Massed training with brief intertrial intervals lead to a rapid reduction of the escape response that recovers after a short term. Conversely, few trials of spaced training renders a slower escape reduction that endures for many days. As predicted by Wagner's associative theory of habituation, long-term habituation in the crab proved to be determined by an association between the contextual environment of the training and the unconditioned stimulus. By performing intracellular recordings in the brain of the intact animal at the same time it was learning, we identified a group of neurons that remarkably reflects the short- and long-term behavioral changes. Thus, the visual memory abilities of crabs, their relatively simple and accessible nervous system, and the recording stability that can be achieved with their neurons provide an opportunity for uncovering neurophysiological and molecular events that occur in identifiable neurons during learning.


Assuntos
Reação de Fuga/fisiologia , Habituação Psicofisiológica/fisiologia , Neurônios/fisiologia , Analgésicos Opioides/metabolismo , Animais , Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Braquiúros , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...